
Communication-Optimal Parallel Algorithm for
Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Benjamin Lipshitz and Oded Schwartz

Sandia National Labs
UC Berkeley

Simons Institute Workshop
October 22, 2013

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,

NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231
and by the National Science Foundation under agreement DMS-0635607.

Grey Ballard 1

The Plan

I’ll present a new parallel algorithm based on Strassen’s matrix
multiplication, called Communication Avoiding Parallel Strassen

The new Strassen-based parallel algorithm CAPS
is communication optimal

matches the lower bounds [B., Demmel, Holtz, Schwartz, ‘11]

is faster: in theory and in practice

I’ll also show performance results and talk about practical
considerations for using Strassen and CAPS

Strassen’s algorithm is not just a theoretical idea: it can be practical
in parallel and deserves further exploration

Grey Ballard 2

Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations

Grey Ballard

Motivation: Strassen’s fast matrix multiplication (1969)

Strassen’s original algorithm uses 7 multiplies and 18 adds for n = 2.
Most importantly, it can be applied recursively.

Q1 = (A11 + A22) · (B11 + B22)

Q2 = (A21 + A22) · B11

Q3 = A11 · (B12 − B22)

Q4 = A22 · (B21 − B11)

Q5 = (A11 + A12) · B22

Q6 = (A21 − A11) · (B11 + B12)

Q7 = (A12 − A22) · (B21 + B22)

C11 = Q1 + Q4 − Q5 + Q7

C12 = Q3 + Q5

C21 = Q2 + Q4

C22 = Q1 − Q2 + Q3 + Q6

F (n) = 7 · F (n/2) + O(n2)

F (n) = Θ
(
nlog2 7

)

log2 7 ≈ 2.81

Grey Ballard 3

Motivation: communication costs

Two kinds of costs:

Arithmetic (FLOPs)

Communication: moving data

between levels of a memory hierarchy (sequential case)
over a network connecting processors (parallel case)

Communication will only get more expensive relative to arithmetic

Grey Ballard 4

Motivation: communication costs

γ = time per FLOP

β = time per word

α = time per message

F = #Flops

BW = #Words

L = #Messages

Running time = γ · F + β · BW + α · L

Grey Ballard 4

Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations

Grey Ballard

Communication lower bounds for matrix multiplication

Classical (cubic):

[Hong & Kung 81]

Combinatorial proof

Sequential only
Ω

((
n√
M

)log2 8

M

)

[Irony, Toledo, Tiskin 04]

Geometric proof

Sequential and parallel
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

[B., Demmel, Holtz, Schwartz 11]:

Sequential and parallel

Graph expansion proof

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

[B., Demmel, Holtz, Schwartz 11]:

Sequential and parallel

Graph expansion proof

Strassen: Strassen-like: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)ω0

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)ω0 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)

Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)

Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classical (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)

Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]

Grey Ballard 5

n = matrix dimension, M = fast/local memory size, P = number of processors

[B., Demmel, Holtz,
Lipshitz, Schwartz 12]
[McColl & Tiskin 99]

Lessons from lower bounds

1 Don’t use a classical algorithm for the communication

Strassen can communicate less than classical

Strassen: Ω

((
n√
M

)log2 7
M
P

)
Classical: Ω

((
n√
M

)log2 8
M
P

)

2 Use all available memory

Communication bound decreases with increased memory
Up to a factor of O(P1−2/ log2 7) extra memory is useful

Strassen: Ω

(
max

{(
n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})

Grey Ballard 6

Lessons from lower bounds

1 Don’t use a classical algorithm for the communication

Strassen can communicate less than classical

Strassen: Ω

((
n√
M

)log2 7
M
P

)
Classical: Ω

((
n√
M

)log2 8
M
P

)

2 Use all available memory

Communication bound decreases with increased memory
Up to a factor of O(P1−2/ log2 7) extra memory is useful

Strassen: Ω

(
max

{(
n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})

Grey Ballard 6

Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations

Grey Ballard

Simple “2D” Classical Algorithm

Here’s the basic communication pattern for the classical “2D” algorithm:

A B C

2D: think Cannon or SUMMA

[Cannon 69, van de Geijn & Watts 97]

2.5D: think reduced communication by using more memory

[Solomonik & Demmel 11]

Grey Ballard 7

Simple “2D” Classical Algorithm

Here’s the basic communication pattern for the classical “2D” algorithm:

A B C

2D: think Cannon or SUMMA

[Cannon 69, van de Geijn & Watts 97]

2.5D: think reduced communication by using more memory

[Solomonik & Demmel 11]

Grey Ballard 7

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van
de Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal, even if you use 2.5D

Grey Ballard 8

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van
de Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal, even if you use 2.5D

Grey Ballard 8

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van
de Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal, even if you use 2.5D

Grey Ballard 8

Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel

each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but

All BFS minimizes communication if
possible

Runs all 7 multiplies sequentially

each uses all P processors

Requires 1/4 as much extra memory

No immediate communication

Increases bandwidth by factor of 7/4

Increases latency by factor of 7

Grey Ballard 9

Tuning the choices of BFS and DFS Steps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3 10 30 100

W
o
rd

s
 s

e
n
t
p
e
r

p
ro

c
e
s
s
o
r,

 u
n
it
s
 o

f
n

2

Memory usage per processor, units of n
2
/P

Other Mixed
Optimal Mixed

Simple

The memory and communication costs of all
(10

5

)
= 252 possible

interleavings of BFS and DFS steps for multiplying matrices of size
n = 351,232 on P = 75 = 16,807 processors using 10 Strassen steps.

Grey Ballard 10

Asymptotic costs analysis

Flops Bandwidth Cost
S

tr
as

se
n

Lower Bound nlog2 7

P max
{

nlog2 7

PM(log2 7)/2−1 ,
n2

P2/log2 7

}
2D-Strassen nlog2 7

P(log2 7−1)/2
n2

P1/2

Strassen-2D
(

7
8

)` n3

P

(
7
4

)` n2

P1/2

CAPS nlog2 7

P max
{

nlog2 7

PM(log2 7)/2−1 ,
n2

P2/log2 7

}

C
la

ss
ic

al

Grey Ballard 11

Asymptotic costs analysis

Flops Bandwidth Cost
S

tr
as

se
n

Lower Bound nlog2 7

P max
{

nlog2 7

PM(log2 7)/2−1 ,
n2

P2/log2 7

}
2D-Strassen nlog2 7

P(log2 7−1)/2
n2

P1/2

Strassen-2D
(

7
8

)` n3

P

(
7
4

)` n2

P1/2

CAPS nlog2 7

P max
{

nlog2 7

PM(log2 7)/2−1 ,
n2

P2/log2 7

}

C
la

ss
ic

al

Lower Bound n3

P max
{

n3

PM1/2 ,
n2

P2/3

}
2D n3

P
n2

P1/2

2.5D n3

P max
{

n3

PM1/2 ,
n2

P2/3

}

Grey Ballard 11

Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations

Grey Ballard

Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 12

Strassen-Winograd peak

Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

classical

actual

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 12

Strassen-Winograd peak

Performance: Model vs Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Model
2.5D Model

2D Model

CAPS
2.5D

2D

Comparison of the parallel models with the algorithms in strong scaling of
matrix dimension n = 65,856 on Intrepid.

Grey Ballard 13

No Contention

Performance of CAPS on large problems

Strong-scaling on Hopper (Cray XE6), n = 131,712.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4 1e5

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 14

Franklin

Performance of CAPS on small (comm-bound) problems

Strong-scaling on Intrepid (left) and Hopper (right), n = 4704.

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4

E
x
e

c
u

ti
o

n
 t

im
e

,
s
e

c
o

n
d

s

Number of Cores

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4 1e5

E
x
e

c
u

ti
o

n
 t

im
e

,
s
e

c
o

n
d

s
Number of Cores

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 15

Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations

Grey Ballard

Practical Considerations for Strassen

1 Harder to reach actual peak performance

computation to communication ratio smaller than classical

2 Additions and multiplications are no longer balanced

3 Architectures are based on powers of 2 not 7

CAPS prefers P = m · 7k

Intrepid requires allocation of power of two number of nodes

4 Stability bounds are not as strong as for classical

Grey Ballard 16

Stability - why you shouldn’t worry

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm

Weaker stability guarantee than classical, but still norm-wise stable
This can be improved with techniques like diagonal scaling

Taking fewer Strassen steps improves the bound

Theoretical bounds are pessimistic in the typical case

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0 2 4 6 8 10 12

M
a
x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Grey Ballard 17

Stability - why you shouldn’t worry

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm

Weaker stability guarantee than classical, but still norm-wise stable
This can be improved with techniques like diagonal scaling

Taking fewer Strassen steps improves the bound

Theoretical bounds are pessimistic in the typical case

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0 2 4 6 8 10 12

M
a
x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Grey Ballard 17

‖C−A·B‖
‖A‖‖B‖

↑
Classical

Diagonal Scaling

Summary

The CAPS matrix multiplication algorithm

1 is communication optimal

2 is faster: in theory and in practice

3 can be practical and should be used and improved

Grey Ballard 18

Communication-Optimal Parallel Algorithm for
Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Benjamin Lipshitz and Oded Schwartz

Grey Ballard 19

Thank You!

www.eecs.berkeley.edu/~ballard

http://bebop.cs.berkeley.edu

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu

Extra slides

1 Performance: Model vs Actual

2 Time breakdown

3 DFS vs BFS

4 BFS on 7 Processors

5 Sequential Performance

6 Data Layout

7 Strassen-Winograd Algorithm

8 Actual vs Effective Performance

9 Small problem on Franklin

10 Big problem on Franklin

11 Diagonal Scaling

12 Open Problems

Grey Ballard 20

Effective vs Actual Performance

0.2

0.4

0.6

0.8

1.0

1.2

2
D

-S
tr

S
tr

-2
D

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

P
e

rf
o

rm
a

n
c
e

,
F

ra
c
ti
o

n
 o

f
P

e
a

k

Number of Strassen Steps
0 1 2 3 4 5 6

Effective Performance
Actual Performance

Efficiency at various numbers of Strassen steps, n = 21952, on 49 nodes
(196 cores) of Intrepid.

Grey Ballard 21

Extras

Communication-Free DFS

Possible if each processor owns corresponding entries of four submatrices
of A, B, and C . [Luo & Drake 95; Grayson, Shah, van de Geijn 95]

Additions of submatrices of A to form the Ti (no communication)

Additions of submatrices of B to form the Si (no communication)

Recursive calls Qi = Ti · Si (communication deeper in recursion tree)

Additions of the Qi to form submatrices of C (no communication)

A

T
0

T
1

. . .

local additions

Grey Ballard 22

Extras

Communication Pattern of BFS

Additions of submatrices of A,B to form Ti ,Si (no communication)

Redistribution of the Ti ,Si (communication)

Recursive calls Qi = Ti · Si (communication deeper in recursion tree)

Redistribution of the Qi (communication)

Additions of the Qi to form submatrices of C (no communication)

Redistributions are disjoint 7-way all-to-all communications.

A

T
0

T
1

T
0

T
1

local additions communication

1

. . .

. . .

Grey Ballard 23

Extras

BFS on 7 Processors

Requires 3 all-to-all communications, one for each of A, B, C

0 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 6

A

0 1 2 3 4 5 6T
0

0 1 2 3 4 5 6T
1

. . .

T
0

0

T
1

1
. . .

local additions communication

0 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 6

B

0 1 2 3 4 5 6S
0

0 1 2 3 4 5 6S
1

. . .

S
0

0

S
1

1

. . .

local additions communication

0 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 6

C

0 1 2 3 4 5 6Q
0

0 1 2 3 4 5 6Q
1

. . .

Q
0

0

Q
1

1

local additionscommunication

. . .

local multiplications

Grey Ballard 24

Extras

Sequential Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

E
ff

e
c
ti
v
e

 P
e

rf
o

rm
a

n
c
e

,
F

ra
c
ti
o

n
 o

f
P

e
a

k

Matrix Dimension

Classical Model
Strassen Model

Classical Data
Strassen Data

Comparison of the sequential model to the
actual performance of classical and Strassen
matrix multiplication on four cores (one

node) of Intrepid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Model Data Model Data Model Data Model Data

T
im

e
,

n
o

rm
a

liz
e

d
 t

o
 c

la
s
s
ic

a
l
m

o
d

e
l
ti
m

e

Number of Strassen Steps

0 1 2 3

DGEMM
Extra Additions

Other

Time breakdown comparison between the
sequential model and the data for n = 4097.
Both model and data times are normalized
to the modeled classical algorithm time.

Grey Ballard 25

Extras

Data Layout

Grey Ballard 26

Extras

Strassen-Winograd Algorithm

(
C11 C12

C21 C22

)
= C = A · B =

(
A11 A12

A21 A22

)
·
(

A11 A12

A21 A22

)

Qi = Si · Ti

S0 = A11 T0 = B11 U1 = Qi + Q4

S1 = A12 T1 = B21 U2 = U1 + Q5

S2 = A21 + A22 T2 = B12 + B11 U3 = U1 + Q5

S3 = S2 − A12 T3 = B22 − T2 C11 = Q1 + Q2

S4 = A11 − A21 T4 = B22 − B12 C12 = U3 + Q6

S5 = A12 + S3 T5 = B22 C21 = U2 − Q7

S6 = A22 T6 = T3 − B21 C22 = U2 + Q3

Grey Ballard 27

Extras

Performance Breakdown: Model vs Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Model Data Model Data Model Data Model Data

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 m

o
d
e
l
ti
m

e

P=49
n=4116

P=49
n=16464

P=2401
n=16464

P=2401
n=65856

DGEMM
Extra Additions
Communication
Reordering
Other

Time breakdown comparison between the parallel model and data on
Intrepid. In each case the entire modeled execution time is normalized to 1.

Grey Ballard 28

Extras

Performance on Franklin for small problem

n = 3136 on Franklin

 0.01

 0.1

 1

1e1 1e2 1e3 1e4

E
x
e

c
u

ti
o

n
 t

im
e

,
s
e

c
o

n
d

s

Number of Cores

Grey Ballard 29

Extras

Performance of CAPS on large problem

Strong-scaling on Franklin (Cray XT4), n = 94,080.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2e2 5e2 1e3 2e3 5e3 1e4 2e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 30

Extras Hopper

Sequential recursive Strassen is communication optimal

Run Strassen algorithm recursively.

When blocks are small enough, work in local memory, so no further
bandwidth cost

W (n,M) =

{
7W (n2 ,M) + O(n2) if 3n2 > M
O(n2) otherwise

Solution is

W (n,M) = O

(
nω0

Mω0/2−1

)

Grey Ballard 31

Extras

Diagonal Scaling

Outside scaling:

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling:

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.

Grey Ballard 32

Extras Back

Diagonal Scaling

Outside scaling:

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling:

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.

Grey Ballard 32

Extras Back

Stability: easy case

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Grey Ballard 33

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (

1 1
1 1

)
·
(

1 1
1 1

)

Extras Back

Stability: more interesting case

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Grey Ballard 34

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
ε ε
1 1

)
·
(

1 ε−1

1 1

)

Extras Back

Stability: problems scaling can’t fix

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Grey Ballard 35

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
1 ε−1

1 1

)
·
(

1 ε−1

1 1

)

Extras Back

Discussion / open problems

Our parallelization approach extends to other matrix multiplication
algorithms:

classical matrix multiplication (matching the 2.5D algorithm)

other fast matrix multiplication algorithms

And to other algorithms with recursive formulations?

Make use of CAPS within other linear algebra algorithms

Grey Ballard 36

Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

classical

actual

Strassen-Winograd

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D

Grey Ballard 37

Back

Performance: Model vs Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Model
2.5D Model

2D Model
CAPS no cont.

CAPS
2.5D

2D

Comparison of the parallel models with the algorithms in strong scaling of
matrix dimension n = 65,856 on Intrepid.

Grey Ballard 38

Back

Extra slides

1 Performance: Model vs Actual

2 Time breakdown

3 DFS vs BFS

4 BFS on 7 Processors

5 Sequential Performance

6 Data Layout

7 Strassen-Winograd Algorithm

8 Actual vs Effective Performance

9 Small problem on Franklin

10 Big problem on Franklin

11 Diagonal Scaling

12 Open Problems

Grey Ballard 39

	Motivation
	Lower Bounds
	Algorithms
	Performance
	Practical Considerations

